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SUMMARY

Direct cell programming via overexpression of tran-
scription factors (TFs) aims to control cell fate with
the degree of precision needed for clinical applica-
tions. However, the regulatory steps involved in
successful terminal cell fate programming remain
obscure. We have investigated the underlying mech-
anisms by looking at gene expression, chromatin
states, and TF binding during the uniquely efficient
Ngn2, Isl1, and Lhx3 motor neuron programming
pathway. Our analysis reveals a highly dynamic pro-
cess in which Ngn2 and the Isl1/Lhx3 pair initially
engage distinct regulatory regions. Subsequently,
Isl1/Lhx3 binding shifts from one set of targets to
another, controlling regulatory region activity and
gene expression as cell differentiation progresses.
Binding of Isl1/Lhx3 to later motor neuron enhancers
depends on the Ebf and Onecut TFs, which are
induced by Ngn2 during the programming process.
Thus, motor neuron programming is the product of
two initially independent transcriptional modules
that converge with a feedforward transcriptional
logic.

INTRODUCTION

Direct programming by the overexpression of transcription fac-

tors (TFs) promises to improve in vitro diseasemodeling and pro-

duce clinically relevant cell types for future cell replacement

therapies. During embryonic development or in vitro directed dif-

ferentiation, cells acquire their terminal fate by progressively tran-

sitioning through intermediate progenitor stages. Accordingly,

the transcriptional profile and chromatin states are also progres-
sively shaped until they reach the terminal state (Gifford et al.,

2013).On theotherhand, successful direct programming requires

that the derived transcriptional network completely replaces the

resident onewithout thebenefit of transitioning through thedevel-

opmental intermediate progenitor states. Thus, there are several

unanswered questions about this abrupt transition. Are all termi-

nal genes upregulated with the same kinetics and do they all

follow similar chromatin trajectories? Do the programming TFs

directly associate with terminal genes or do their binding targets

change as programming progresses? What is the role of tran-

scription factors induced at early programming stages? Without

such guiding principles to help design direct programming strate-

gies for generating cells that are copies of those found in vivo,

most current direct programming protocols remain inefficient.

Understanding the molecular mechanisms underlying such

drastic cell fate transitions will be instrumental to improving the

efficiency of direct programming protocols.

Programming TFs must activate cell-specific genes when ex-

pressed in cellular and epigenetic conditions alien to those they

face during embryonic development. These cell-specific gene

targets may not be accessible or expression-competent in the

initial cell state. How programming TFs engage the genome

was investigated during the programming of two diametrically

opposite cell fates, leading to two alternative models. Soufi

et al. (2012) proposed a dynamic model whereby the OSKM

reprogramming factors cooperatively bind to a broad set of

regulatory regions that are ultimately refined in cells that are suc-

cessfully reprogrammed to a pluripotent state. In a small per-

centage of the cells, the OSKM factors have the ability to bind

to repressed chromatin domains and activate pluripotency

gene expression (Soufi et al., 2012, 2015). Alternatively, during

programming of excitatory neurons from fibroblasts, Ascl1 is

proposed to rapidly bind ‘‘on-target’’ to a set of terminal state

regulatory regions (Wapinski et al., 2013). The contrasting pro-

gramming TF behaviors (dynamic off-target versus static on-

target) could be due to intrinsic differences when programming

rapidly dividing pluripotent cells versus a postmitotic neuron.
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However, the low efficiency of most programming protocols to

terminal fates precludes the investigation of chromatin and tran-

scription factor dynamics at regulatory regions and genes

without confounding signals from cells that are not following a

productive programming path. Therefore, although the program-

ming processes have begun to be delineated, the chromatin tra-

jectories and functions of genes induced during such cellular

conversions remain obscure.

In an extreme case of rapid and efficient direct programming,

we have recently shown that the expression of Ngn2, Isl1, and

Lhx3 TFs (the NIL factors) directly programs spinal motor neuron

fate without the application of patterning signals (Mazzoni et al.,

2013). When expressed in pluripotent cells, the NIL factors pro-

gram motor neuron fate within 48 hr, bypassing all intermediate

motor neuron progenitor states. The terminal motor neurons

share cellular and molecular properties with motor neurons

generated during development. The expression of the NIL fac-

tors in pluripotent stem cells has two clear advantages as a

model of TF-mediated direct programming. First, NIL expression

programs spinal motor neurons, a specific cell type that has a

known correlate in vivo (Dasen and Jessell, 2009; Jessell,

2000) and is a desired programming target for clinical applica-

tions. Thus, it is possible to precisely measure the cellular

outcome. Second, NIL programming is extremely efficient,

above 90%, making it possible to study productive and effective

direct programming without the confounding signals of cells that

failed to achieve complete terminal fate.

To understand how cells transition from a rapidly dividing

pluripotent stem cell to a postmitotic spinal motor neuron, we

investigated the dynamics of the transcriptome, chromatin land-

scape, and programming TF binding during the first 48 hr after

NIL expression (Figures 1A and S1A). Our results revealed that

NIL-directed programming is the product of a transcriptional

and chromatin multi-step cascade. We suggest that motor

neuron programming is the result of two independent regulatory

modules induced by Ngn2 and the Isl1/Lhx3 pair that converge

with a feedforward regulatory logic by the activity of the Onecut

and Ebf TF families.

RESULTS

Single Cell RNA-Sequencing Reveals a Rapid
Transcriptional Cascade during Direct Programming
Direct programming is characterized by the activity of one or

more regulators that force the establishment of a different tran-
Figure 1. NIL Programming Factors Induce a Transcriptional Cascade

Motor Neurons

(A) Schematic overview of the experimental procedure. Spinal motor neurons (s

transcription factors (TFs) in pluripotent cells. The cells collected at distinct time p

for histone modifications (H3K4me1/2/3 and H3K27ac/me3) and NIL TFs.

(B) Single cell RNA-seq time course. Ordering each cell based on its pseudo-tim

mediate products.

(C) Promoter classes based on combinatorial histone modification dynamics a

chromatin states (see STAR Methods) and their corresponding gene expression

promoter region and linearly scaled so that different histone modifications are co

(D) Detailed overview of gene expression dynamics for the different up- and down

million mapped reads (FPKM) values were scaled on the gene level to highlight ge

related to the number of genes that are unambiguously assigned to it (genes per

P7 = 1,020; P8 = 1,682; P9 = 1,758; P10 = 2,022; and P11 = 2,325).
scriptional network and thus a new cell fate. We have previously

reported the drastic transcriptional transformation that results

from NIL expression in embryonic stem cells (ESCs) (Mazzoni

et al., 2013). However, we did not analyze two important aspects

of this transformation: the programming trajectory and the ho-

mogeneity of the terminal cell population. We thus investigated

these aspects using single cell RNA-sequencing (seq).

We performed single cell expression analysis before inducing

the NIL factors and at 6, 12, 18, 24, 30, 36, and 48 hr after treating

the inducible NIL cells with doxycycline and successfully

sequenced a total of 368 cells. We used diffusion maps to esti-

mate pseudo-time ordering for each cell into a differentiation

progression path (Haghverdi et al., 2015). Organizing the cells

by differentiation pseudo-time reveals a remarkably unidirec-

tional trajectory with no apparent branching points or roadblocks

to programming motor neurons within 48 hr (Figure 1B). Reas-

suring to our unsupervised path reconstruction and as expected

from the differentiation protocol, the differentiation pseudo-time

trajectory contains a unique starting point. Moreover, single cell

expression analysis of a selected group of genes (n = 705) re-

veals different activation and repression kinetics during pro-

gramming, also recovered with the cell population average

observed in bulk RNA-seq (Figure S1B). Thus, NIL programming

factors induce a series of transcriptional changes that directly

programs postmitotic motor neuron fate from pluripotent cells

through a single differentiation trajectory. Moreover, these

results suggest that NIL programming dynamics can be as-

sessed using population-wide assays like bulk RNA-seq and

chromatin immunoprecipitation (ChIP)-seq without loss of tem-

poral resolution.

NIL Expression Induces Remodeling of Chromatin at
Promoters
In stepwise cell differentiation, progressive chromatin changes

at promoters restrict the differentiation potential as cells become

more differentiated, while the chromatin landscape must be

rapidly transformed to complete programming. To understand

chromatin dynamics during motor neuron programming, we per-

formed a ChIP-seq time series (0 hr, 12 hr, 24 hr, and 48 hr after

NIL induction) for histone H3 lysine 4 trimethylation (H3K4me3),

histone H3 lysine 27 trimethylation (H3K27me3), and acetylation

(H3K27ac) (Figure 1A). To discover groups of promoters based

on their histone modification time-course profiles, we designed

a conditional Gaussian Bayesian network model (Lauritzen

and Wermuth, 1989; Pearl, 1988) that can learn and classify
Driving a Unidirectional Cell Fate Transition from Pluripotent Cells to

MN) are obtained 48 hr after inducing the expression of Ngn2-Isl1-Lhx3 (NIL)

oints after NIL induction were subjected to RNA-seq, ATAC-seq, and ChIP-seq

e reveals a unidirectional differentiation trajectory, with no branches or inter-

t promoters (left) classified using a Bayesian Network model for time course

levels (right). The histone ChIP-seq values displayed are averaged for each

mparable.

regulated promoter classes. The gene fragments per kilobase of transcript per

ne expression dynamics. The height of the heatmap of each promoter class is

class: P1 = 773; P2 = 1,241; P3 = 1,472; P4 = 2,878; P5 = 1,927; P6 = 1,875;
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combinatorial time-course trajectories of multiple ChIP-seq data

sets such that a given cluster represents the dynamic trajectories

of all analyzed histone modifications together (Figure S1C). The

model assumes that each histone modification is independent

of all others given the cluster assignment and operates on the

fold changes between the time points for each histone modifica-

tion assuming that a given fold change value for a given histone

modification is dependent upon the preceding fold change value

(Figure S1C; see STAR Methods).

We applied this model to cluster promoter regions based on

the combinatorial trajectories of H3K4me3, H3K27ac, and

H3K27me3 histone modifications into 11 promoter classes (P1

to P11; Figures 1C and S1D). Grouping those promoter classes

into three broad groups for upregulation, downregulation, and

no-change reveals that promoters followmultiple distinct activa-

tion and repression trajectories, which in turn correspond to

distinct gene expression dynamics (Figure 1C). This is reflected

in the extent of up- or downregulation as well as the slope of

change in gene expression. Scaling the expression of each

gene and visualizing the scaled values as a heatmap shows

that different promoter groups correspond to different up- and

downregulation kinetics (Figure 1D).

The highest promoter and transcription activation occurs in P1

promoters, which start in a bivalent H3K4me3/H3K27me3 state

(Figure S1E) and resolve into an active H3K4me3/H3K27ac state

(Bernstein et al., 2006; Hawkins et al., 2011). GeneOntology (GO)

(Gene Ontology, 2015) and Reactome pathway enrichment anal-

ysis (Croft et al., 2014;Milacic et al., 2012) show that those genes

are enriched in motor neuron differentiation and axonogenesis

genes (Table S1). In contrast, P7 promoters show an opposite

trend where they start in an active H3K4me3/H3K27ac state

and switch to a repressed H3K27me3 state, also reflected in a

strong and rapid decrease in gene expression. GO and Reac-

tome analysis show enrichment for pluripotency genes in this

group (Table S1). Similar to P1 promoters, P10 promoters start

in a bivalent H3K4me3/H3K27me3 state (Figure S1E), but are

not activated during differentiation. GO analysis indicates a gen-

eral enrichment for cell fate specification showing that this group

includes cell-fate specific genes that are not activated duringmo-

tor neuron differentiation. The contrast between P1, P7, and P10

promoters suggests that duringNIL induction pluripotency genes

(e.g., Lin28a, Fgf4, Oct4, and Sox2) are repressed as stem cell

fate is extinguished, presumably by the activity of the program-

ming factors and culture conditions, while neuron (e.g., Tubb3)

andmotor neuron genes (e.g., Chat, Isl2, and Hb9) are activated,

and genes related to other developmental pathways are un-

changed (e.g., Tead4, Tbx5, and GATA6) (Figures 1C and 1D).

Therefore, NIL induction in a chromatin environment distinct to

that encountered during normal development results in signifi-

cant promoter chromatin remodeling consistent with a motor

neuron fate. Further, these results reveal that even without tran-

sitioning through progenitor stages, bivalent chromatin states at

promoters get resolved in a lineage specific manner as they do

during stepwise differentiation.

Ngn2 and Isl1/Lhx3 Target Distinct Genomic Loci during
Early Motor Neuron Programming
How does the forced expression of Ngn2, Isl1, and Lhx3 control

a unidirectional differentiation trajectory with multiple dynamic
4 Cell Stem Cell 20, 1–13, February 2, 2017
expression and chromatin changes? To answer this question,

we investigated the binding pattern of Ngn2, Isl1, and Lhx3 after

induction and deployed MultiGPS, an integrative machine-

learning approach for profiling multi-condition ChIP-seq data

sets (Mahony et al., 2014) (see STAR Methods).

We found that Isl1 and Lhx3 co-occupy 98% of their bound

regulatory regions at 12 hr postinduction (Figure 2A), consistent

with what we previously reported at 48 hr (Mazzoni et al., 2013).

However, only �13% of Isl1/Lhx3 binding overlaps with Ngn2 at

12 hr (Figure 2B). Furthermore, GO term analysis of genes close

to Ngn2 versus Isl1/Lhx3 bound regions shows that Isl1/Lhx3

binding is associated with specific spinal cord and motor neuron

genes, while Ngn2 binding is associated with more generic

neuronal differentiation activities (Table S2). These results sug-

gest that Ngn2 controls genes associated with a more general

neuronal fate, while Isl1 and Lhx3 activate motor neuron specific

gene expression.

Dynamic Binding of Isl1 and Lhx3 during Cell
Programming
To assess whether the programming factors stably associate

with regulatory regions controlling motor neuron fate or if their

binding patterns change over time following activation, we first

profiled Isl1 and Lhx3 binding at 12 hr, 24 hr, and 48 hr using

ChIP-seq. We also assessed Isl1 and Lhx3 binding at an earlier

8 hr time point, before the programming factors reach maximum

level of expression. The binding pattern is almost identical

(<8% difference) between 8 hr and 12 hr (Figure S2A), and there-

fore we used the latter more robust data as our baseline for early

binding. Since Ngn2 protein levels rapidly decrease as cells

become postmitotic (Mazzoni et al., 2013), we did not assess

Ngn2 binding dynamics after 12 hr.

Out of 14,969 sites bound by both Isl1 and Lhx3 observed dur-

ing programming, we could confidently categorize 7,983 of them

into three binding classes based on their dynamic behavior dur-

ing programming (Figure 2C; since Isl1 and Lhx3 binding is highly

correlated, we show only Lhx3 for simplicity). Of these catego-

rized sites, 31% were assigned to an ‘‘early only’’ class, where

programming factors bind at early stages of programming and

lose their binding as cells transition into a postmitotic motor

neuron fate. Another 48% of the binding events did not show

any markedly differential ChIP enrichment over the course of

programming and were assigned to a ‘‘constant’’ class. The pro-

gramming factors engage these sites at early stages of program-

ming and maintain their binding until cells are completely

programmed. A further 21%were assigned to a ‘‘late only’’ class;

these sites are only engaged later in the programming process.

Therefore, Isl1 and Lhx3 binding divides into a group of

sites constantly engaged during programming and sites that

are dynamic even during the short 48 hr span of motor neuron

programming.

NIL Factors Associate with Both Accessible and
Inaccessible Regulatory Regions
The plastic pluripotent state is often thought to be associated

with chromatin states that are poised to be activated. Therefore,

the high programming efficiency by the NIL factors might be due

to their binding targets being mostly located in accessible chro-

matin in pluripotent cells. To investigate this model, we mapped
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sites at 12 hr after inducing the NIL TFs (Lhx3 only

sites = 13,459; Ngn2 only sites = 11,019; and Lhx3
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(C) Lhx3 binding is dynamic during NIL program-

ming. Early only sites (n = 2,477) are bound only in
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bound stably throughout the process of program-

ming, while late only sites (n = 1,682) are bound only

at the later stages of programming. The heatmaps in
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ordered by binding strength, while the heatmaps in
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binding class.
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cate counts that fall in accessible (blue) and inac-

cessible (orange) regions (see STAR Methods).
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accessibility by ATAC-seq (Buenrostro et al., 2013) before NIL in-

duction (0 hr; Figure 2D). ATAC-seq cut site counts at Ngn2, Isl1/

Lhx3 early only; Isl1/Lhx3 constant; and Isl1/Lhx3 late only bind-

ing sites demonstrate that transient early binding byNgn2 or Isl1/
Lhx3 is split between accessible and inac-

cessible regulatory regions. However, Isl1/

Lhx3 constant binding and late binding

occur in regions that were mostly inacces-

sible by ATAC-seq before programming

began (Figure S2B). Therefore, the high

programming efficiency by NIL factors

does not solely rely on binding sites being

accessible prior to NIL expression, but is

also associated with regulatory regions

that are inaccessible in the initial cell fate.

Isl1 and Lhx3 Binding Correlates
with Enhancer Dynamics during
Programming
To identify the enhancers controlled by NIL

and to understand if programming TF bind-

ing activates, decommissions, or is incon-

sequential for the chromatin state of

regulatory elements, we asked whether

enhancer chromatin dynamics correlates

with Ngn2, Isl1, and Lhx3 binding during

programming. Ngn2 binding to previously

accessible regions largely took place in

proximal promoter regions, whereas bind-

ing at inaccessible sites occurred distally

to genes (Figure S2C). Consistent with its

role activating the general neuronal pro-
gram, proximal regulatory regions associated with Ngn2 acces-

sible binding remain accessible and active (Figures 3A, 3B, S3A,

and S3B). 0 hr-accessible early only Isl1/Lhx3 sites rapidly

lose accessibility, H3K27ac, H3K4me2, and H3K4me1 during
Cell Stem Cell 20, 1–13, February 2, 2017 5
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Figure 3. Regulatory Regions Bound by the

NIL Programming Factors follow Distinct

Activation and Inactivation Dynamics that

Correlate with Promoter Activity

(A and B) Changes of DNA accessibility (A) and

H3K27ac histone modification levels (B) stratified

according to NIL TF binding dynamics. The DNA

accessibility is displayed using ATAC-seq cut sites

depth-normalized counts. The H3K27ac is dis-

played using ChIP-seq averaged depth-normalized

counts. The counts were quantile-normalized

across time (see STAR Methods). See Figure S3A

for the corresponding H3K4me2 and H3K4me1

plots.

(C) Association frequencies of TF binding sites with

promoter classes (P1–P11; see Figure 1 for classi-

fications) represented as log2 fold-change relative

to a random model of association frequencies (see

STAR Methods). Each TF binding site was assigned

to its closest promoter, with a distance cutoff of

100 kb.
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programming (Figures 3A, 3B, and S3A). On the other hand, Isl1/

Lhx3 constant and late only sites occur in regions of the genome

with low initial accessibility and activity that change to accessible

and active upon TF binding, as evident by an increase in ATAC-

seq reads and a concomitant H3K27ac, H3K4me2, and

H3K4me1 enrichment as programming progresses (Figures 3A,

3B, and S3A). Therefore, early Isl1/Lhx3 binding to distal regula-

tory regions seems to be associated with decommissioning of

enhancers active at the initial cell fate, while constant and late

only Isl1 and Lhx3 binding promote enhancer activation.

NIL Binding Dynamics Is Associated with Promoter
Dynamics
The fact that chromatin dynamics at regulatory elements directly

correspond to Isl1/Lhx3 binding dynamics suggests that NIL

binding dynamics might be directly responsible for the expres-

sion waves observed during programming (Figure 1C). Thus,

we investigated if Ngn2, Isl1, and Lhx3 enhancer binding classes

defined based on dynamics and accessibility (Figure 2D) are

associated with our previously identified dynamic promoter clas-

ses (Figure 1C). To assign each binding site to a target promoter,

we chose a ‘‘closest-promoter’’ model, where each TF binding

site is assigned to its closest promoter region if the binding site

is within 100 kb of the promoter region. Using the closest-

promoter model, we measured the enrichment or depletion of

association between transcription factor binding and dynamic

promoter classes. This analysis revealed: (1) Although Ngn2
6 Cell Stem Cell 20, 1–13, February 2, 2017
and Isl1/Lhx3 early binding to inaccessible

enhancers does not clearly associate with

a specific promoter class, Ngn2 and Isl1/

Lhx3 early binding to accessible regions

is associated with downregulated genes

in agreement with the chromatin behavior

at those binding sites (Figure 3C); (2) Isl1/

Lhx3 constant sites are enriched in the

proximity of strongly upregulated P1 and

P2 promoters and depleted from downre-

gulated P6 and P7 classes (Figure 3C);
and (3) late only Isl1/Lhx3 sites are enriched in P2 and P3 cluster

promoters that are upregulated later during programming (Fig-

ure 3C), but are depleted from downregulated promoters (Fig-

ure 3C). Together, these results suggest that the early binding

of the NIL factors to accessible regions is associated with tran-

scriptional downregulation. On the other hand, Isl1/Lhx3 con-

stant and late binding activates regulatory regions controlling

the transcriptional cascade during programming (Figure 3C).

Of note, the closest-promoter model enriches for correlation be-

tween promoter chromatin trajectories and their assigned

enhancer trajectories better than a simpler method that assigns

promoters to all binding sites within 500 kb (Figure S3C and data

not shown). Therefore, our data suggest a direct control of

gene expression by the programming factors; NIL binding

appears to regulate the local chromatin status at bound regula-

tory regions, and we see a surprising correlation between pro-

moter and enhancer chromatin dynamics during motor neuron

programming.

Secondary Motif Features Suggest Time-Dependent
Interactions with Cooperative TFs
The strong correlation of different classes of TF binding events

with distinct chromatin and expression dynamics suggest that

dissecting the mechanisms by which Isl1 and Lhx3 are recruited

to their various regulatory regions during programming is

required to understand the entire programming process. En-

hancers are engaged by multiple transcription factors, and
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Figure 4. Distinct DNAMotifs Are Associated

with Different Isl1/Lhx3 Binding Classes

(A) Heatmap showing the relative frequencies of

de novo motifs discovered at Isl1/Lhx3 dynamic

binding classes. While constant sites are enriched

for the canonical motif for the NIL factors, early only

and late only sites are enriched for pluripotent TFs,

Ebf, and Onecut motifs, respectively. See Fig-

ure S4A for the raw motif frequencies.

(B) The heatmap shows the average FPKM values of

Zic5, Oct4, and distinct members of the Ebf and

Onecut TF family scaled across time for each gene.

(C) Immunocytochemistry analysis shows that Ebf2

and Onecut2 are expressed after NIL TFs induction.
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coordinated TF binding is often associated with enhancer activ-

ity during development and programming (Arnosti et al., 1996;

Boyer et al., 2005; Mazzoni et al., 2013; Wapinski et al., 2013).

Thus, to identify other transcription factors that could influence

Isl1 and Lhx3 binding dynamics during programming, we

searched for overrepresented DNA sequence motifs in each of

the three Isl1/Lhx3 dynamic binding categories (see STAR

Methods).

Constant Isl1/Lhx3 sites are characterized by more frequent

instances of the primary Isl1/Lhx3 homeodomainmotif than early

only and late only sites, suggesting that Isl1 and Lhx3 recognize

sites that contain favorable binding sequences and remain

bound to these sites throughout the programming process (Fig-

ures 4A and S4A). A fraction of constant binding sites are also

enriched for the E-box motif variant that is associated with

Ngn2 and other bHLH factors such as Neurod1, also activated

during programming. Indeed, many of those E-box containing

sites are bound by Ngn2 during early stages of programming

(Figure S4B), demonstrating that DNA sequencemotifs can point

to cooperative TF interactions.

Interestingly, early only binding events have relatively less

frequent instances of the primary Isl1/Lhx3 motif compared to

constant sites. These early only sites are also enriched for motifs
corresponding to the pluripotency factor

Oct4 (Figures 4A and S4A) and are associ-

ated both with accessible chromatin

(Figure 2D) and the binding of Oct4

at 0 hr (Figure S4C). Finally, late only bind-

ing sites also have less frequent instances

of the Isl1/Lhx3 primary motif than con-

stant sites. However, late only sites are

enriched for motifs corresponding to Ebf

and Onecut transcription factors (Figures

4A and S4A). Ebf and Onecut factors are

not only expressed and required for em-

bryonic motor neuron development, but

are also expressed during NIL-induced

programming (Figures 4B and 4C) (Fran-

cius and Clotman, 2010; Garcia-Domi-

nguez et al., 2003; Kratsios et al., 2011;

Razy-Krajka et al., 2014; Roy et al., 2012;

Stolfi et al., 2014). Thus, it is possible that

regulatory genes induced during program-

ming are required to recruit programming
factors to a cohort of binding sites late in the programming

process.

Synergistic Interactions among Programming and
Induced Transcription Factors Underlie Motor Neuron
Programming
The expression, chromatin, and TF binding analysis duringmotor

neuron programming suggest a programming transcriptional

cascade where initially Ngn2 and Isl1/Lhx3 bind independently

to the genome. In this model, Isl1/Lhx3 bind to accessible re-

gions, presumably pluripotent regulatory elements, but then

leave those sites as programming progresses. Isl1/Lhx3 addi-

tionally bind to inaccessible sites that contain frequent primary

motifs from the earliest phases of programming. Isl1/Lhx3 sub-

sequently gain access to additional inaccessible regulatory re-

gions as programming progresses, possibly aided by Ebf and

Onecut. We decided to test this model.

First, our model postulates that Isl1 and Lhx3 bind to unfavor-

able pluripotent chromatin regions without requiring Ngn2 to

make those regions accessible. To test this hypothesis and

confirm that we have not underestimated Ngn2 binding proximal

to Isl1/Lhx3 sites, we expressed Isl1 and Lhx3 in the absence of

Ngn2 (inducible Isl1-Lhx3 cell line, iIL) and also Ngn2 by itself
Cell Stem Cell 20, 1–13, February 2, 2017 7
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(inducible Ngn2 cell line, iN). ChIP-seq for Ngn2 and Lhx3 re-

vealed that neither Ngn2 nor Lhx3 binding is drastically affected

in the absence of Isl1/Lhx3 or Ngn2, respectively (Figure 5A).

Although they represent a minority of sites, there is a significant

decrease in Ngn2 binding when expressed without Isl1 and Lhx3

in regions where all three factors co-bind: �59% of Ngn2/Isl1/

Lhx3 co-bound sites showed significantly reduced Ngn2 ChIP

enrichment in the iN cell line (Figures 5A, S5A, and S5C). On

the other hand, Lhx3 binding was largely unaffected with only

8% of Ngn2/Isl1/Lhx3 co-bound sites showing reduced Lhx3

ChIP enrichment in the iIL cell line (Figures 5A, S5B, and S5C).

These results confirm that Ngn2 is not bookmarking enhancers

for later Isl1/Lhx3 activation during motor neuron programming.

Second, the model postulates that members of the Ebf and

Onecut family that are induced during programming should

bind with Isl1 and Lhx3 to inaccessible sites and should be

particularly enriched at late only sites. Accordingly, ChIP-seq

analysis of Ebf2 and Onecut2 at 48 hr after NIL expression re-

veals that their binding is associated with Isl1 and Lhx3 binding

during late programming states (Figure 5B). Ebf2 and/or Onecut2

bind to only 12%of early only Isl1/Lhx3 binding sites. In contrast,

69% of late only Isl1/Lhx3 binding sites co-occur with Ebf2

and/or Onecut2 (Figure 5B).

Third, the model postulates that in conditions where Ebf and

Onecut genes are not expressed, Isl1 and Lhx3 will see their

late only binding reduced even 48 hr after programming begins.

While Hb9 and Slit2 genes are enriched for Ngn2/Isl1/Lhx3 co-

binding and Isl1/Lhx3-only binding, respectively (Figures S6A

and S6B), Ngn2 binding was highly enriched at Onecut2 and

Ebf2 genes, with little or no Ngn2-independent Isl1/Lhx3 enrich-

ment (Figures S6C and S6D). Accordingly, Ngn2, but not

Isl1+Lhx3, expression induced Ebf and Onecut TFs (Figures 5C

and 5D). The lack of Ebf and Onecut expression in the iIL line

(Figures 5C and 5D) provides a unique opportunity to test if the

late only Isl1/Lhx3 sites are dependent on Ebf or Onecut. Lhx3

ChIP-seq experiments after inducing Isl1+Lhx3 alone revealed

that Lhx3 is not only retained at a large number of sites that

are early only in NIL induction, but also fails to bind most late

only sites. Nearly 35%of the early only sites showed significantly

higher Lhx3ChIP enrichment in the absence of Ngn2 expression,

while 70% of the late only sites showed significantly lower Lhx3

ChIP enrichment (Figures 5B, S5D, and S5F).

Fourth, if the lost late only sites in the iIL line are only

dependent on Ebf andOnecut TFs and not any other Ngn2-regu-

lated activity, they should be regained in a cell line expressing
Figure 5. Early Isl1/Lhx3 Binding Is Ngn2 Independent, while Ebf and O

(A) Isl1/Lhx3 do not depend on Ngn2 to bind to their sites. The heatmap displays

Lhx3 (iNIL), and Ngn2 (iN) inducible cell lines. On average, only 2% of Lhx3 bindin

Ngn2; (Lhx3 only: n = 13,459; Lhx3-Ngn2: n = 2,056; and Ngn2: n = 11,019).

(B) A large fraction of late only Isl1/Lhx3 sites overlap with Ebf2 and Onecut2 bind

Lhx3 at 12 hr and 48 hr and for Ebf2 and Onecut2 at 48 hr after NIL induction. The

12%, 46%, and 69%, respectively. The heatmaps display ChIP-seq binding for Lh

to shift its binding sites from early only to late only sites in the absence of Onecut a

induced expression of Ebf2 and Onecut2 in the iIL-EO cell line. Moreover, when Eb

bind earlier to the late only sites.

(C) Immunocytochemistry analysis shows that Ebf2 and Onecut2 are expressed in

already detected 24 hr after induction in the iIL-EO cell line.

(D) RT-qPCR analysis of Ebf and Onecut factor mRNA levels in iNIL and iIL 48 h

* = p < 0.05, and not significant = NS (t test, gene expression at 48 hr compared
Isl1+Lhx3 in combination with Ebf and Onecut TFs. To test this

hypothesis, we constructed the iIL-EO cell line with inducible

expression of Isl1, Lhx3, Ebf2, and Onecut2. Lhx3 ChIP-seq in

the iIL-EO line demonstrates that Lhx3 binding is rescued at a

minimum of 21% of late only sites that contain Ebf or Onecut

even within 12 hr of induction. This is in sharp contrast to only

5% and 8% of early only and constant sites, respectively,

showing increased enrichment in the iIL-EO cell line (Figures

5B, S5E, and S5G). The rescued sites were consistently retained

in the iIL-EO line at subsequent time points. Lhx3 ChIP-seq at

24 hr, 36 hr, and 48 hr in the iIL-EO cell line showed 24%,

39%, and 31% of the sites being rescued, respectively (Figures

5B and S5G). Therefore, even the expression of only two from a

total of seven Ebf and Onecut TFs is sufficient to rescue a signif-

icant fraction of late only sites.

Finally, if Ebf and Onecut expression is an important limiting

factor for Isl1/Lhx3 to bind to late only sites, forced Ebf and One-

cut expression during early stages of NIL programing should

accelerate Lhx3 recruitment to late only sites. Indeed, the addi-

tion of Ebf2 andOnecut2 to theNIL factors (NIL-EO line) results in

rapid Lhx3 recruitment to 21% and 23% of late only sites at 12 hr

and 24 hr, respectively (Figures 5B, S5E, and S5G). Together,

these results demonstrate that a set of TFs activated during pro-

gramming synergistically interact with the programming TFs to

shift their binding to a subset of inactive enhancers, thereby

enabling a late wave of gene expression that completes the mo-

tor neuron programming process (Figure 6).

DISCUSSION

By taking advantage of a uniquely efficient and homogeneous

direct motor neuron programming system, we have character-

ized the chromatin state transitions in response to the dynamic

TF behavior during a complete programming process. Although

the programming process is quite rapid, multiple forms of evi-

dence support a regulatory logic where initially parallel modules

activated by Ngn2 and Isl1/Lhx3 converge with a feedforward

transcriptional logic mediated by Ebf and Onecut TFs to com-

plete the programming process (Figure 6). For instance: chro-

matin modifications at promoters and gene activation occurs

with at least 11 different kinetic patterns; Ngn2 and Isl1/Lhx3

engage different sets of distal and proximal regulatory regions;

and as programming progresses, Ngn2 induces Ebf and Onecut

TFs that enable Isl1/Lhx3 binding to previously inaccessible

sites, completing motor neuron programming.
necut TFs Facilitate Isl1/Lhx3 Binding to Late Only Sites

ChIP-seq binding sites at 12 hr for Lhx3 and Ngn2 in Isl1-Lhx3 (iIL), Ngn2-Isl1-

g sites show differential ChIP enrichment when Lhx3 is induced with or without

ing to regulatory regions (left). The heatmaps show ChIP-seq binding sites for

overlap at early only, constant, and late only sites with Ebf2 and/or Onecut2 is

x3 in the inducible iIL, iIL-EO, and NIL-EO cell lines (right). Lhx3 loses the ability

nd Ebf TFs (iIL). However, late only Lhx3 binding is significantly rescued by the

f2 and Onecut2 are expressed along with the NIL TFs (iNIL-EO), Lhx3 is able to

iN, but not in iIL, cell line 48 hr after induction. Ebf2 and Onecut2 expression is

r after TF induction. The data are mean ± SEM. *** = p < 0.001, ** = p < 0.01,

to gene expression at 0 hr; n = 3).
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Figure 6. Feedforward Regulatory Cascade

during Motor Neuron Programming

Proposed model. Programming motor neuron

terminal fate does not consist of a single regulatory

step; genes take different chromatin trajectories

resulting in a rapid cascade of gene expression.

Initially, Ngn2 and the Isl1/Lhx3 pair engage

distinct regulatory regions. A fraction of Isl1 and

Lhx3 binding sites shift during programming.

The Ngn2-induced Ebf and Onecut TFs are

required for Isl1 and Lhx3 to bind and regulate

terminal motor neuron genes during later stages of

programming.
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Chromatin state transitions have been primarily studied in

stepwise cellular differentiation (Tsankov et al., 2015; Wang

et al., 2015; Ziller et al., 2015); how regulatory regions respond

to direct programming that bypasses gradual commitment is

not clear. We observed at least three distinct classes of strong

gene activation (P1, P2, and P3), only one of which clearly starts

in the well-characterized bivalent H3K4me3/H3K27me3 state

(P1; Figure S1E). Bivalent promoters are thought to poise gene

expression allowing for timely activation of developmental genes

upon differentiation (Bernstein et al., 2006; Voigt et al., 2013).

Although lineage specific bivalent promoters are rapidly acti-

vated, supporting their preactivation state, our results indicate

that this bivalent promoter state might not be a required prereq-

uisite for subsequent activation of all promoters during program-

ming (Denissov et al., 2014; Hu et al., 2013). We propose that the

initial regulatory region chromatin state combined with the

establishment and resolution of bivalent state at promoters dur-

ing differentiation and programming might act to fine-tune the

response kinetics of certain promoters relative to others.

In agreement with the idea that during stepwise differentiation,

stage-specific TFs control chromatin state dynamics (Tsankov

et al., 2015; Wang et al., 2015; Ziller et al., 2015), Isl1 and Lhx3

binding dynamics correlate with dynamics of accessibility and

histone modifications marking active enhancers. We also

observed a clear distinction in enhancer activity time-course

profiles between NIL binding to sites accessible at 0 hr before

NIL expression and NIL binding to 0 hr inaccessible regions.

While the former show a decrease in activity during differentia-

tion, the latter show amarked increase in activity. The early bind-

ing to accessible regions that is lost during differentiation could

be inconsequential and explained by Isl1 and Lhx3 initially bind-

ing opportunistically to some accessible sites with relatively

infrequent primary motifs.

The analysis of the NIL factors revealed a complex dynamic

binding behavior highlighting the necessity of considering two

different aspects of programming TF combinations. The first

one is the synergy among expressed TFs at initial stages of pro-

gramming. Similarly to Ascl1, Ngn2 binds to sites with a strong

E-box motif and does so independently of any other program-

ming factor we have profiled. On the other hand, it is becoming

clear that Isl1 cooperates at regulatory regions with other factors

such as Lhx3, Lhx8, and Phox2a to achieve cell specific gene
10 Cell Stem Cell 20, 1–13, February 2, 2017
expression (Bhati et al., 2008; Cho et al., 2014; Lee et al.,

2012; Lee and Pfaff, 2003; Mazzoni et al., 2013; Thaler et al.,

2002). Although it is important to note that these two programs

will integrate at some specific enhancers (Castro et al., 2006;

German et al., 1992; Lee and Pfaff, 2003; Wapinski et al.,

2013), our results suggest a regulatory paradigm where the

neurogenic activity and cell specific network behave mostly

independently, as evidenced by the independent binding of

Ngn2 and Isl1/Lhx3.

The second aspect of programming TF combinations that

should be considered concerns the activity of TFs that are ex-

pressed during or after programming begins. Intuitively, as direct

programming TFs are often chosen based on their importance in

the regulation of the target cell type, it is expected that they acti-

vate terminal cell fate by directly and specifically binding to cell

specific regulatory regions. However, and as mentioned earlier,

the few previous studies came to different conclusions about

how this process occurs: the multi-stage model seen during plu-

ripotency reprogramming versus the ‘‘on-target pioneer’’ model

seen in direct neuronal programming. The efficiency of the NIL

programming system and the high temporal resolution of this

study reveal aspects of both models during motor neuron pro-

gramming. Isl1/Lhx3 constant sites are characterized by a

more frequent homeodomain DNA motif and were not largely

preaccessible. These observations suggest that constant sites

are high-affinity sites where Isl1 and Lhx3 bind even when the

regulatory regions are not completely accessible or active and

are bound stably during programming.

As programming progresses, Isl1 and Lhx3 gain access to pre-

viously inaccessible sites with weaker motifs than those seen in

constant sites. Our data suggest that TFs expressed during

programming, Ebf and Onecut, make sites accessible for later

Isl1 and Lhx3 binding. Thus, Ebf and Onecut factors induced

during programming play an important role in shaping program-

ming TF binding. Programming TF binding to terminal genes is

therefore influenced by the complement of additional regulators

that they induce.

The activity of Ebf and Onecut TFs to complete programming

has strong implications for the rational design of efficient pro-

gramming strategies. These factors might be considered

terminal selectors and play important roles during motor neuron

differentiation (Audouard et al., 2012; Francius and Clotman,
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2010; Roy et al., 2012). The synergistic power of these induced

TFs should be considered in efforts to identify roadblocks during

transdifferentiation. For example, Hb9 is a downstream target of

the NIL factors, but necessary for motor neuron programming

from fibroblasts even when the NIL factors are expressed (Son

et al., 2011). Therefore, in cases where chromatin inaccessibility

prevents the expression of a few crucial TFs, their inclusion in the

TF programming combination might increase programming effi-

ciency and precision for clinical applications.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
The inducible ESC lineswere generated using the inducible cassette exchange (ICE) system (Iacovino et al., 2011). The resulting trans-

genic lines harbor a single copy of the transgene recombined into a defined expression-competent locus. NIL (Ngn2-Isl1-Lhx3)
Cell Stem Cell 20, 1–13.e1–e8, February 2, 2017 e2

mailto:eom204@nyu.edu
http://www.deweylab.biostat.wisc.edu/rsem/
http://www.bioconductor.org/packages/devel/bioc/html/sva.html
http://www.bioconductor.org/packages/devel/bioc/html/sva.html
http://www.bowtie-bio.sourceforge.net/index.shtml
http://www.bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://www.bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://www.samtools.sourceforge.net/
https://www.github.com/arq5x/bedtools2
https://www.github.com/seqan/flexbar
https://www.github.com/mahmoudibrahim/JAMM/releases
https://www.github.com/bedops/bedops
http://www.bioinf.wehi.edu.au/limma/
https://www.github.com/mahmoudibrahim/timeless
https://www.github.com/bayesnet/bnt
http://www.mahonylab.org/software/multigps/
https://www.cran.r-project.org/web/packages/mclust/index.html
https://www.cran.r-project.org/web/packages/mclust/index.html
https://www.github.com/vegandevs/vegan
http://www.wanglab.ucsd.edu/star/epigram/
http://www.bejerano.stanford.edu/great/public/html%20RRID:SCR_005807
http://www.bejerano.stanford.edu/great/public/html%20RRID:SCR_005807
https://www.github.com/fidelram/deepTools
https://www.cran.r-project.org/web/packages/gplots/index.html
https://www.cran.r-project.org/web/packages/gplots/index.html
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE80483
https://www.genome.ucsc.edu/cgi-bin/hgTrackUi?db=mm10&amp;g=wgEncodeGencodeVM3
https://www.genome.ucsc.edu/cgi-bin/hgTrackUi?db=mm10&amp;g=wgEncodeGencodeVM3
https://www.genome.ucsc.edu/
http://www.pantherdb.org/
http://www.amp.pharm.mssm.edu/Enrichr/
http://www.cisbp.ccbr.utoronto.ca/


Please cite this article in press as: Velasco et al., A Multi-step Transcriptional and Chromatin State Cascade Underlies Motor Neuron Programming
from Embryonic Stem Cells, Cell Stem Cell (2016), http://dx.doi.org/10.1016/j.stem.2016.11.006
inducible ESC line was previously generated (Mazzoni et al., 2011, 2013). To generate the p2lox-IL plasmid, Isl1-Lhx3 open reading

frames were amplified from p2Lox-NIL and inserted into the p2Lox-V5 plasmid (Mazzoni et al., 2011). Thus, Lhx3 coding sequence is

V5-tagged at the C terminus in both NIL and IL inducible cell lines. The p2lox-IL-EO and p2lox-NIL-EO plasmids were obtained by

cloning Ebf2 and Onecut2 open reading frames under control of a second inducible tetracycline response element (TRE), into the

p2lox-IL or p2lox-NIL plasmid, respectively. In this way, in the IL-EO and NIL-EO cell lines, IL and NIL expression is under control

of a first TRE whereas Ebf2 and Onecut2 expression is regulated through a second TRE. 2A peptides were used to separate Ngn2-

Isl1-Lhx3, Isl1-Lhx3 and Ebf2-Onecut2 in the NIL, IL and NIL/IL-EO inducible lines, respectively. The p2lox-N plasmid was obtained

by cloning the Ngn2 open reading frame into a p2lox-Flag plasmid (Mazzoni et al., 2011). Phusion polymerase (New England Biolabs)

was used tominimize the introduction ofmutations during PCR amplification. The inducible cell lines (iIL, iIL-EO, iNIL-EO and iN) were

generated by treating the recipient ESCs for 16 hr with 1 mg/ml Dox to induce Cre followed by electroporation of the respective plas-

mids (p2lox-IL, p2lox-IL-EO, p2lox-NIL-EO and p2lox-N). After G418 selection (250ng/ml, Cellgro), cell lines were characterized by

performing antibody staining (Hb9, Isl1/2, Chat, Vacht, Tubb3) and expanded.

All the inducible ESC lines were grown in 2-inhibitors medium (Advanced DMEM/F12:Neurobasal (1:1) Medium (GIBCO), supple-

mented with 2.5% ESC-grade fetal bovine serum (vol/vol, Corning), N2 (GIBCO), B27 (GIBCO), 2mM L-glutamine (GIBCO), 0.1 mM

b-mercaptoethanol (GIBCO), 1000 U/ml leukemia inhibitory factor (Millipore), 3mMCHIR (BioVision) and 1 mMPD0325901 (Sigma). To

obtain embryoid bodies (EBs) ESC were trypsinized (GIBCO) and seeded in AK medium (Advanced DMEM/F12:Neurobasal (1:1)

Medium, 10%Knockout SR (vol/vol) (GIBCO), Pen/Strep (GIBCO), 2mM L-glutamine and 0.1 mM 2-mercaptoethanol) (day�2). After

2 days, EBswere passed 1:2 and the inducible cassette was induced by adding 3 mg/ml of Doxycycline (Sigma) to the culturemedium

(EBs 0h). For gene and protein expression analysis 33 105 cells were plated in each 100 mm dish. For ChIP experiments, the same

conditions were used, but scaled to seed 3 3 106 cells in each square dish (245mm x 245mm).

METHOD DETAILS

Immunocytochemistry
Embryoid bodies were fixed with 4% paraformaldehyde (vol/vol) in phosphate-buffered saline, embedded in OCT (Tissue-Tek) and

sectioned for staining: 24 hr at 4�C for primary antibodies and 4 hr at 20–25�C for secondary antibodies. After staining, samples were

mounted with Fluoroshield with DAPI (Sigma). Images were acquired with a SP5 Leica confocal microscope. We used antibodies to

V5 (R960-25, Thermo Fisher Scientific; 1:5000), Oct3/4 (Sc-5279, Santa Cruz; 2mg/ml), Ki67 (Ab15580, Abcam; 1:5000), b3-Tubulin

(T2200, Sigma; 1:5000), Hb9 (81.5C10, DSHB; 1:1000), Ebf2 (AF7006, R&D Systems; 1mg/ml) and Onecut2 (AF6294, R&D Systems;

2mg/ml). Alexa 488 (A-11029, A-11015), Alexa 568 (A-11036) secondary antibodies were used (Thermo Fisher Scientific, 1:2000).

qPCR
RNAwas extracted using QIAGEN RNAeasy kit following manufacturer’s instructions. For quantitative PCR analysis, cDNAwas syn-

thesized using SuperScript III (Invitrogen), amplified using Maxima SYBR green brilliant PCR amplification kit (Thermo Scientific) and

quantified using a CFX 96 Touch Biorad qPCR thermocycler (Biorad). One independent differentiation was considered to be a bio-

logical replicate (n = 1). See Table S3 for sequences of primers used in real-time RT-PCR analysis.

RNA-Seq
For single cell RNA-seq analysis, cells were collected at different time points after NIL induction. Differentiating embryoid bodies were

washed with phosphate-buffered saline and then dissociated by mild trypsinization followed by mechanical dissociation into single

cell suspension. Viable cells were labeled by incubating with 1 mMFluorescein diacetate (Sigma) at 37�C for 10 min. Single cells were

FACS-sorted into 96-well plates containing 10 ml of 1% b-mercaptoethanol in TCL buffer (QIAGEN). Once sorting was completed,

plates were sealed, centrifuged 1min at 800 g at RT and immediately frozen on dry ice. Plates were kept at�80�C until lysate cleanup

and reverse transcription of mRNA. Single cell libraries were prepared in two overall batches using a custom version of the SMART-

Seq2 protocol (Picelli et al., 2013; Satija et al., 2015), without the use of Random Molecular Tags. Cells were sequenced with 50bp

single end reads on a HiSeq 2500 at an average sequencing depth of 325,000 reads per cell.

For bulk cell RNA-seq analysis, cells were collected at different time points after NIL induction and RNA isolated using TRIzol LS

(Life Technologies) followed by purification using QIAGEN RNAeasy kit. RNA-Seq libraries were prepared using Illumina TruSeq RNA

library preparation kit v2. Fifty base pair single-end sequencing was performed using Illumina HiSeq-2500 at the NYU Genome Core

facility.

ChIP-Seq
Cells were collected at different time points after NIL induction and fixedwith 1mMDSG (ProteoChem) followed by 1% formaldehyde

(vol/vol) for 15 min at 20–25�C. Pellets containing �25 3 106 cells were stored at �80�C. Cells were thawed on ice, resuspended in

5 mL of Lysis Buffer A (50 mM HEPES-KOH pH 7.5, 140 mM NaCl, 1 mM EDTA, 10% glycerol (vol/vol), 0.5% Igepal (vol/vol), 0.25%

Triton X-100 (vol/vol)) and incubated for 10 min at 4�C in a rotating platform. Samples were spun down for 5 min at 1,350 g, resus-

pended in 5 mL Lysis Buffer B (10 mM Tris-HCl pH 8.0, 200 mM NaCl, 1 mM EDTA pH 8.0, 0.5 mM EGTA pH 8.0) and incubated for

10 min at 4�C in a rotating platform. Samples were spun down for 5 min at 1,350 g, resuspended in 3 mL of Sonication Buffer (50 mM

HEPES pH 7.5, 140 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 0.1% sodium deoxycholate (wt/vol), 0.1% SDS (wt/vol)).
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Nuclear extracts were sonicated on ice using a Branson 450 Sonifier (20% power amplitude; 18 cycles x 30 s pulses with 1 min in-

terval between each pulse) to sheer cross-linked DNA to an average fragment size of approximately 500 bp. Sonicated chromatin

was incubated for 16 hr at 4�Cwith Dynabeads protein-G (Thermo Fisher Scientific) conjugated with either rabbit polyclonal antibody

to V5 (ab15828, Abcam) to immunoprecipitate Lhx3 or a combination of monoclonal antibodies (40.3A4, 39.3F7 and 40.2D6, DSHB)

for Isl1. Ngn2 was immunoprecipitated by using a goat polyclonal antibody (sc-19233, Santa Cruz), whereas to immunoprecipitate

Oct4 (sc-5279, Santa Cruz), Ebf2 and Onecut2, a rabbit polyclonal antibody (ab156999, Abcam) and a sheep polyclonal antibody

(AF6294, R&D Systems) were used, respectively. For histone modifications the following rabbit polyclonal antibodies were used:

ab8895 (Abcam) for H3K4me1, ab7766 (Abcam) for H3K4me2, 39159 (Active Motif) for H3K4me3, ab4729 (Abcam) for H3K27ac

and 39155 (Active Motif) for H3K27me3. After incubation, and with the aid of a magnetic device, beads were washed once with Son-

ication Buffer, than with Sonication buffer and 500 nM NaCl and once with LiCl Wash Buffer (20 mM Tris-HCl (pH 8.0), 1 mM EDTA,

250mMLiCl, 0.5%NP-40, 0.5%sodiumdeoxycholate) and 1mL of TE (10mMTris, 1mMEDTA, pH 8). Then, beadswere centrifuged

at 950 g for 3 min and the residual TE removed with a pipette. 210 ml of Elution Buffer (50 mM Tris-HCl (pH 8.0), 10 mMEDTA (pH 8.0),

1% SDS) was added to the beads followed by incubation at 65�C for 45 min with a brief pulse of vortex every 10 min. 200 ml of su-

pernatant was removed after a 1 min centrifugation at 16,000 g. The crosslink was reversed by 16 hr incubation at 65�C. RNA was

digested by the addition of 200 ml of TE and RNase A (Sigma) at a final concentration of 0.2 mg/ml and incubated for 2 hr at 37�C.
Protein was digested by the addition of Proteinase K (Invitrogen) at a final concentration of 0.2 mg/ml, supplemented with CaCl2 fol-

lowed by a 30 min incubation at 55�C. DNA was extracted with phenol:chloroform:isoamyl alcohol (25:24:1; vol/vol) (Invitrogen) and

then recovered with an ethanol precipitation with glycogens as carrier. The pellets were suspended in 70 ml of water.

One third (24ul) of ChIP DNAwas used to prepare lllumina DNA sequencing libraries. Briefly, after end repair and A-tailing, Illumina-

compatible Bioo Scientific multiplexed adapters were ligated and the unligated adapters removed through purification using Agen-

court AmpureXP beads (BeckmanCoulter). Adapter-ligated DNAwas amplified by PCR using TruSeq primers, both fromSigma. DNA

libraries between 300 and 500 bp in size were gel purified. KAPA SYBR FAST Roche LightCycler 480 2X qPCR Master Mix (Kapa

Biosystems) was used in 20 mL reactions that were analyzed in a Roche LightCycler. Fifty base pair single-end sequencing was per-

formed using Illumina HiSeq-2500 at the NYU Genome Core facility.

ATAC-seq
50,000 cells were harvested and washed in ice-cold PBS buffer. After centrifugation the supernatant was aspirated and the cell pellet

was resuspended in a master mix of 22.5 ml RNase-free water, 25 ml TD buffer and 2.5 ml TDE1 (transposase enzyme, both Illumina

Nextera DNA Library Prep kit), followed by incubation for 60 min at 37�C. The reaction was then cleaned using the DNA Clean and

Concentrator-5 kit (ZymoResearch). The optimal number of PCR cycleswas determined to beCt+4. qPCR reactionswere performed

using 10% of a master mix of sample, forward and reverse (barcode) primers, 1X SYBR Green I (Biozym) and 1X NEBNext PCR

MasterMix (New England Biolabs). Following PCR amplification, the library was cleaned using the DNA Clean and Concentrator-5

kit and eluted in 15 ml 10 mM Tris-Cl pH 8.0. Sample was quantified using Qubit (Life Technologies) measurement and the fragment

length distribution was determined using the Bioanalyzer DNA High Sensitivity assay (Agilent). Sequencing was performed on an

Illumina NextSeq 500 using V2 chemistry for 150 cycles (paired-end 75nt).

QUANTIFICATION AND STATISTICAL ANALYSIS

Single Cell RNA-Seq Analysis
Single cell data processing and filtration

Wequantified gene expression (transcripts per million) in each library as previously described (Shalek et al., 2013). Briefly, we aligned

reads to a Bowtie (Langmead et al., 2009) index based on the UCSC knownGene annotations for mm9, and quantified expression

values per cell using RSEM 1.2.21 (Li and Dewey, 2011). We filtered out low quality cells where we detected less than 2,000 unique

genes, which typically had poor transcriptomics alignment rates (< 30%, as compared to 65% for successful cells).

We first ran a principal component analysis (PCA) using all detected genes again using a similar approach to Shalek et al. (2013),

and saw that the first component perfectly separated the two experimental batches, a trend that has been widely observed in single

cell RNA-seq experiments (Hicks et al., 2015). We therefore subtracted the first PC from the data in order to remove this batch effect.

We obtained similar results using alternative batch effect correction methods, such as COMBAT (Leek et al., 2012), or obtaining

regression residuals.

Calculating developmental trajectories and ‘‘pseudotime’’

As trajectory analysis is sensitive to gene input list, we first sought to identify a set of genes whose expression changeswith biological

time (the time point during the differentiation series when the cells were collected). We used a strategy similar to (Trapnell et al., 2014),

aiming to identify genes whose variance in expression level could be explain by biological time. We therefore constructed a linear

model for each gene as a function of its biological time. We identified 458 genes where the linear model explained a significant

(p < 1e-5 after Bonferroni correction) of the variance in gene expression.

We next used these 458 genes as input to a diffusion map (Haghverdi et al., 2015), a non-linear dimensional reduction technique

that has been shown to be well-suited to reconstructing developmental trajectories for single cell data (Haghverdi et al., 2015). We

noted a significant eigenvalue dropoff after the second diffusionmap coordinate, and observed that the cells traced a path across the

first two dimension map coordinates that was well-correlated with the experimental time point. We therefore assigned each cell a
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‘pseudotime’ value, reflecting its progression through the differentiation process, by projecting a principal curve (Hastie and Stuetzle,

1989) through the first two diffusion map dimensions using the princurve package in R.

RNA-Seq, ATAC-Seq, and ChIP-Seq Analysis
Aligning and preprocessing data sets

Expression was quantified from RNA-seq using the Gencode (Mudge and Harrow, 2015) mm10 transcriptome (vM3) and RSEM

v1.2.7 (parameters:–output-genome-bam –forward-prob = 0 –calc-ci) (Li and Dewey, 2011). RSEM was set to use bowtie v1.0.0

for read alignments (Langmead et al., 2009). The geometric average of RSEM’s expected FPKM across the biological replicates

was used for all further analysis.

After transposase adaptor trimming using Flexbar v2.4 (parameters: -f i1.8 -u 10 -ae RIGHT -at 1.0, (Dodt et al., 2012), ATAC-

Seq fastq files were aligned to mm10 genome build using bowtie2 (Langmead and Salzberg, 2012) in paired-end mode

(parameters: -X 2000–no-mixed –no-overhang). Potential PCR duplicates were removed using samtools v1.3 rmdup (Li and Dewey,

2011). Resulting BAM files were converted to single-end BED files using bedtools v2.17.0 bamtobed (Quinlan and Hall, 2010). Rep-

licates from the same time-point were concatenated for all further analysis.

All histone modification ChIP-Seq fastq files were aligned to mm10 genome build using bowtie2 v2.1.0 (Langmead and Salzberg,

2012) with default parameters. After filtering for uniquely-aligned reads that had 2 or less mismatches, potential PCR duplicates were

removed using samtools rmdup (parameters: -s) (Li et al., 2009). Resulting BAM files were converted to BED format using bedtools

bamtobed command when necessary (Quinlan and Hall, 2010). For H3K4me1, replicates files were concatenated for all further

analysis. JAMM was used to obtain the average fragment length for each experiment (Ibrahim et al., 2015). All transcription

factor ChIP-Seq fastq files were aligned to mouse genome (version mm10) using Bowtie (1.0.1) (Langmead et al., 2009) with options

‘‘-q–best–strata -m 1–chunkmbs 1024.’’ Only uniquely mapped reads were considered for further analysis.

Promoter time-course chromatin state clustering

Promoter regions were defined as �200bp to +2000bp at all annotated Gencode mm10 TSSs (vM3) (Mudge and Harrow, 2015). All

overlapping promoter regions were merged regardless of strand to obtain unique non-overlapping promoter regions. JAMM’s

SignalGenerator v1.0.7rev2 (Ibrahim et al., 2015) script was used to generate depth-normalized, background-subtracted bedGraph

files at promoter regions for H3K4me3, H3K27ac and H3K27me3 at 1bp resolution (parameters: -n depth -b 1). The average signal for

each histone modification at each promoter region was obtained from those bedGraph files using bedOps v2.3.0 bedmap command

(parameters: –mean) (Neph et al., 2012).

ChIP-Seq experiments across multiple time-points are affected by global confounders related to changes in the number of sites at

each time-point, which is not accounted for via simple depth normalization. To remedy this issue, each histonemodification is quantile

normalized across all time points using normalizeQuantile command from the limma v3.18.13 R package with default parameters

(Ritchie et al., 2015). All promoter regions that have lower than background levels for all clustered histone modifications at all time-

points are removed from further analysis. Background for each histone modification is defined as the arithmetic mean of its signal

across all time-points and all promoter regions. This yields 22,302 promoter regions. The log2 fold-change between each two consec-

utive time-points for each histone modification at each promoter region is calculated after adding a pseudocount of 1 to all values.

To obtain combinatorial time-course clusters of promoter regions based on multiple histone modification datasets across multiple

time points, we designed a Bayesian Network (BN) (Pearl, 1988) model with a conditional Gaussian probability distribution (Figure S3)

(Lauritzen and Wermuth, 1989). The model features one discrete unobserved class variable upon which all continuous univariate

Gaussian observed variables are conditioned. The discrete unobserved variable represents the cluster that defines a certain chro-

matin state trajectory, while the continuous observed variables represent the consecutive log2 fold-changes in ChIP-seq signal be-

tween the consecutive time points. This gives a structure similar to a Naive Bayes model in terms of independence between different

chromatin marks, but we allow for dependencies between the observed variables representing a histone modification at different

time points as long as the acyclicity condition of BNs is satisfied (Friedman et al., 1997). Although any tree topology is possible to

represent differentiation time course data, for NIL differentiation, we opted to model the chromatin trajectory as a simple linear chain

without any branches as predicted via our single-cell RNA-seq analysis (Figure 1B).

Each histone modification is modeled via its own tree, meaning that each histone modification is independent of all other histone

modifications given the discrete class variable (Figure S3). Each univariate Gaussian node is modeled via a linear regression of its

corresponding univariate Gaussian parent. Since any continuous node will also be conditioned on the unobserved discrete class

node, a different set of regression parameters is defined separately for each value of the discrete parent (ie. each cluster defines

a different chromatin state trajectory). The model can be summarized as follows:
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where aðciÞ and bðciÞ are positive real numbers and s2ðsjtÞ is the standard deviation of sjt. This model has the advantages of sparsity

and of avoiding large covariance matrices which pose problems for model fitting. It is also seamlessly extended to as many histone

modification datasets as necessary, potentially even if the time-points assayed do not match, as well as any data type that can

be represented in the same manner described above (for example, RNA-seq, transcription factor ChIP-seq, DNase-seq, ATAC-

seq.etc.). Furthermore, although this was not needed for NIL-induced differentiation, the model is flexible to allow potentially com-

plex structures representing lineage relationships between the different cell types at the different time points. Compared to GATE (Yu

et al., 2013), a program for time-course chromatin state discovery, themodel presented here is amore general exploratorymodel that

can potentially combine different arbitrary datasets and has the distinct advantage of not restricting chromatin trajectories to vary

only between two states (active / inactive) over time as is the case with GATE. In our case, there is no restriction on the complexity

of the chromatin state trajectory or the cell stage lineage tree.

To learn point estimates of the parameters of the Bayesian Network model, we use the Expectation-Maximization algorithm for

Bayesian Networks implemented in the MATLAB Bayesian Network Toolbox (BNT) (Murphy, 2001). The EM algorithm is initialized

viaMATLAB’s kmeans command (parameters: distance, cityBlock – Replicates, 15 –MaxIter 300). The junction-tree inference engine

implemented in the BNT toolbox is used to assign each promoter region a probability of belonging to each of the learned clusters of

chromatin trajectories. Each promoter region is assigned to the cluster with the highest probability. To determine the number of clus-

ters, we performed 10-fold cross validation and examined the change in the likelihood of the model as the number of clusters in-

creases (Figure S4). Although we did not find evidence of overfitting for the range examined, cluster numbers higher than 11 improve

themodel likelihood onlymodestly. We chose 11 clusters as a good balance between ease of interpretation and the fit of themodel to

the data. To determine the final clustering of our data, we trained our model on all promoter regions available for clustering, then as-

signed each promoter region to the cluster with the highest probability.

Figure 1C shows the quantile-normalized ChIP-Seq values (see above), after linearly scaling the values to ensure histone modifi-

cations are comparable, averaged over all promoter regions that belong to a given cluster. Scripts used for preprocessing, clustering

and plotting are available at: https://www.github.com/mahmoudibrahim/timeless

The corresponding RNA-Seq FPKM plots are made using the default R boxplot function on the logarithm of RSEM FPKM values

after adding a pseudo-count of 1. Outliers are not displayed. Genes that havemultiple promoter regions (due to alternative promoters

or alternative transcripts) assigned to different promoter chromatin clusters were excluded from the RNA-Seq plots and from Gene

Ontology (GO) (Gene Ontology, 2015) analysis. The corresponding gene expression heatmaps (Figure 1E) are made on the same

FPKM values after centering the expression of each gene at zero, by subtracting the mean across time for each gene from each

time-point of that gene.

GO (Ashburner et al., 2000; Gene Ontology, 2015) enrichment was performed using the pantherdb.org website on 24 March 2016

(Mi et al., 2016), using gene symbols, the default background gene set and GOBiological Process Complete. Results were filtered for

GO terms that hadmore than 100 or less than 2000 genes in the background reference set and a p value that is less than 0.01. Taking

only enrichment results into account, terms were sorted by their enrichment score and the top 4 terms were reported for each pro-

moter cluster in Table S1. Enrichment score is defined as -log10(p)*F, where F is the fold-enrichment reported by Panther (Mi et al.,

2016).

Reactome (Croft et al., 2014; Milacic et al., 2012) pathway analysis was done using the Enrichr website on 10 April 2016 (Chen and

Arlotta, 2016), and the top two pathways for each promoter cluster were reported in Table S1. Enrichment score reported is the one

provided by Enrichr.

Defining 0 hr Bivalent Promoters

Bivalent promoter regions at 0hr were defined as those that intersect H3K4me3 peaks at 0hr and had H3K27me3 level at 0hr higher

than H3K27ac level at 0hr. Peaks were called using JAMM v1.0.7rev2.

Defining dynamic Isl1/Lhx3 binding classes

Isl1 and Lhx3 binding sites were profiled using MultiGPS (Mahony et al., 2014), which enables the identification of differentially-

enriched TF binding sites across multiple conditions. Our initial analysis showed that Isl1 and Lhx3 mostly bind to the same sets

of regions genome-wide with similar ChIP enrichment. Hence we treated Isl1 and Lhx3 datasets at each time-point as different con-

ditions in a single MultiGPS run. The discovered binding events were required to have a significant ChIP enrichment over input sam-

ples (q-value < 0.001) as assessed using binomial tests. For exploring the binding dynamics of Isl1 and Lhx3, we carefully curated 3

distinct dynamic Isl1/Lhx3 binding classes. Isl1 and Lhx3 binding sites at the 12hr time point, which were not called at the 48hr time-

point, were placed into the ‘‘early-only’’ binding class. In addition, ‘‘early only’’ binding sites were further required to have significantly

higher ChIP enrichment (q-value < 0.05) at the 12hr time-point when compared to the 48hr time-point for either Isl1 or Lhx3. Constant

Isl1/Lhx3 sites were required to be called at the 12hr and 48hr time-points for both Isl1 and Lhx3. Further, sites showing significantly

different ChIP enrichment (q-value < 0.01) between the 12hr and 48hr time-points in either Isl1 or Lhx3 were removed from the

‘‘constant’’ binding class. Isl1 and Lhx3 binding sites at the 48hr time point, which were not called at the 12hr time-point, were placed

in the late only binding class. In addition, late only binding sites were required to have significantly higher ChIP enrichment (q-value <

0.05) at the 48hr time-point compared to the 12hr time-point for either Isl1 or Lhx3.

Lhx3 and Ngn2 binding across different inducible cell-lines (iNIL, iIL, iN, iIL-EO) was also compared using MultiGPS. All the differ-

ential binding sites were defined using a MultiGPS q-value cutoff of 0.05. For visualization box-plots of fold-changes of ChIP enrich-

ment were displayed using R’s boxplot function.
Cell Stem Cell 20, 1–13.e1–e8, February 2, 2017 e6

https://www.github.com/mahmoudibrahim/timeless
http://pantherdb.org


Please cite this article in press as: Velasco et al., A Multi-step Transcriptional and Chromatin State Cascade Underlies Motor Neuron Programming
from Embryonic Stem Cells, Cell Stem Cell (2016), http://dx.doi.org/10.1016/j.stem.2016.11.006
Binding overlaps across transcription factors

Binding sites for Ngn2, Onecut2, and Ebf2 were identified using MultiGPS (Mahony et al., 2014) with different runs for each transcrip-

tion factor. Binding events were required to have a significant ChIP enrichment over the input samples based on a binomial test

(q-value < 0.001). For binding sites overlap analysis for Onecut2 and Ebf2, we only considered the top 50,000 binding sites (to

account for �10 fold more binding sites discovered in these datasets compared to Isl1/Lhx3 and Ngn2). To compare binding sites

of Isl1/Lhx3 with other TFs we implemented a simple peak matching procedure, which matches peaks if their midpoints lie within

200bp of each other. In cases when there was more than one matching pair, we picked the one that had the smallest distance

between the matching peaks.

Transcription Factor Accessibility Stratification

ATAC-seq histograms (Figure 2D) were made by counting the transposase cut site locations (the 50 ends of all ATAC-Seq reads) that

fall within 100bp of the transcription factor binding site.

To stratify transcription factor binding sites as 0hr accessible or 0hr inaccessible, the cut site counts for all stratified binding sites

were log transformed and clustered using Gaussian mixture modeling into two clusters using the R package mclust with default pa-

rameters (Fraley et al., 2012). Alternatively, peaks were called on ATAC-seq using JAMMv1.0.7rev2 (parameters: -e auto -f 1 -b100)

(Ibrahim et al., 2015) and transcription factor binding sites were extended by 100bp in each direction before intersecting themwith the

ATAC-Seq peaks using bedtools intersect command (Quinlan and Hall, 2010).

Single base pair binding sites were used for assigning transcription factor distance to Gencode’s annotated TSSs (vM3) (Mudge

and Harrow, 2015). Distal Ngn2 binding sites are those that aremore than 10kb away from the nearest annotated TSS. Proximal Ngn2

binding sites are those that are less than 1kb away from the nearest TSS.

TF Binding Site / Promoter Assignment and Correlation

Each transcription factor binding site was assigned to its closest promoter region, requiring that the distance is 100kb or less. This

generates amatrix of transcription factor binding site / promoter regions association frequencies, expressing a one-to-many relation-

ship of promoter regions-to-transcription factor binding sites. To obtain a suitable null model, the association frequency matrix was

randomized 100,000 times but requiring that row sums and column sums remain the same, using the function permatfull in the R

package vegan v2.3-2 (parameters: fixedmar = both burnin = 1000 time = 100000) (Dixon, 2003). Values plotted in Figure 3C are

the log2 fold-change values of the observed association frequency matrix to the averaged randomized matrix. Values higher/lower

than zero indicate enrichment/depletion of association compared to the randomized matrix.

Promoter-Enhancer correlation analysis was done using Pearson correlation coefficient. For binding sites, H3K27ac quantile-

normalized values (see above) were used. For promoter regions, H3K4me3 quantile-normalized values were used. Promoter-

enhancer assignment based on correlations was done using the same correlation set assigning an enhancer to a promoter if their

correlation coefficient is higher than 0.8 and they were within 500kb of each other.

Motif analysis at dynamic Isl1/Lhx3 binding classes

Epigram (version 0.003) (Whitaker et al., 2015) was used to identify de novomotifs in a 150bpwindow around Isl1/Lhx3 dynamic bind-

ing classes. An in-house script was used to calculate the frequencies of the identified motifs at Isl1/Lhx3 binding classes. Log-odds

motif scoring thresholds that yield false positive rates of 0.05 were calculated using random sequences generated from a 3rd-order

Markov model based onmouse nucleotide frequencies (mm10 version). De novo discovered motifs present at a frequency of 10% or

greater in at least one of the Isl1/Lhx3 binding classes were considered for further analysis. All the identified de novo motifs were

matched to CIS-BP (version 1.02) (Weirauch et al., 2014). These matches were further filtered based on whether the transcription

factors associated with the matched motifs were expressed in the NIL programming time course. Motif frequencies were used to

plot the heatmap in Figure 4A. The heatmap.2 function in the gplots R package was used to make the heatmap (Warnes et al.,

2016). The columns in the heatmap were scaled to aid visualization of motif differential enrichment at different dynamic classes.

GO Term enrichment at TF binding sites

GREAT (version 3.0.0) (McLean et al., 2010) was used to find enriched GO-Terms at Ngn2 and Lhx3/Isl1 binding sites (Table S2).

‘‘Single nearest gene’’ option with distance of 1000kb was used to run GREAT.

Visualization and Plotting
Cumulative plots for histone modification: To generate average plots for histone modification data, ChIP-Seq replicate experi-

ments were concatenated and converted to bigwig files using deepTools bamCoverage at 10bp resolution (parameters:–

normalizeUsingRPKM; Ramı́rez et al., 2014), using the average fragment length predicted by JAMM (Ibrahim et al., 2015). bedGraph

files generated by JAMM were used for ATAC-seq. deepTools computeMatrix (Ramı́rez et al., 2014) was then used to generate the

counts at the regions of interest. ChIP-Seq input was subtracted from the ChIP-Seq data at each binding site and each position and

values lower than zero were considered zero. The arithmetic mean at each position is then plotted in R, after quantile normalizing the

values for each dataset at each position across time using normalize Quantiles limma R command with default parameters (see

above) (Ritchie et al., 2015). Finally, the arithmetic mean at each position is then plotted in R. All heatmaps were plotted using the

heatmap.2 function in the gplots R package.

Transcription factor binding site heatmaps: To visualize TF binding sites, we used in house code to generate heatmaps. Briefly,

each row in a heatmap represents a 1000bp window centered on the midpoint of a TF binding site. Reads were extended to

100bp and overlapping read counts are binned into 10bp bins. Color shading between white and amaximum color are used to repre-

sent depth of read coverage in each heatmap. We used a systematic approach to choose the read depth represented by the
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maximum color for each tracks. We first calculated the read counts in 10bp bins at all identified binding sites for the given transcrip-

tion factor and then used the 95th percentile value as the maximum value for the color pallet. The following are the read depths rep-

resented by the maximum color for different heatmaps (Lhx3 12hr NIL: 54, Lhx3 24hr NIL: 90, Lhx3 48hr NIL: 34, Ngn2 12hr NIL: 98,

Lhx3 12hr IL: 15, Lhx3 48hr IL: 25, Ngn2 12hr N: 144, Onecut2 48hr NIL: 94, Ebf2 48hr NIL: 117, Oct4 0hr NIL: 51, Lhx3 12hr IL-EO: 30,

Lhx3 24hr IL-EO: 35, Lhx3 36hr IL-EO: 25, Lhx3 48hr IL-EO 12, Lhx3 12hr iNIL-EO: 59, Lhx3 24hr iNIL-EO: 37).

Browser snapshots: An in house script was used to generate the browser shots. Reads from both the strands were merged and

extended to 100bp. The colors of the tracks were matched to the colors of the TF heatmaps.

DATA AND SOFTWARE AVAILABILITY

Software
The Conditional Gaussian Bayesian Network (BN) model for promoter clustering is available at: https://www.github.com/

mahmoudibrahim/timeless.

Data Resources
The accession number for the raw and analyzed sequencing data reported in this paper is NCBI GEO: GSE80483 and is publically

available through the following link: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE80483.

ADDITIONAL RESOURCES

The Gencode annotated mm10 TSSs (vM3) can be found at:

https://www.genome.ucsc.edu/cgi-bin/hgTrackUi?db=mm10&g=wgEncodeGencodeVM3

The mouse reference genome mm10 is deposited at: https://www.genome.ucsc.edu/

For GO enrichment, the Panther website was used: http://www.pantherdb.org/

For Reactome, Enrichr website was used: http://www.amp.pharm.mssm.edu/Enrichr/

All the identified de novo motifs were matched to CIS-BP (version 1.02): http://www.cisbp.ccbr.utoronto.ca/
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